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1. Introduction

The study of wrapped D-branes on cycles of Calabi-Yau manifolds has provided many

insights into the study of gauge theory dynamics. The geometrical set-up with wrapped

D5-branes and the brane configurations with D4-branes and NS branes are T-dual to each

other. The two approaches provide the same type of information about the underlying field

theories. There are advantages and disadvantages for either of the two approaches:

1. the IIA brane configuration picture can be easily lifted to an M-theory configuration

which describes the strongly coupled regime of the field theory (for a review see [1]).

The disadvantage is the lack of a SUGRA solution.

2. there is a SUGRA solution in IIB for the wrapped D5-branes on 2-cycles of the

resolved conifold, in the presence of an NS flux [2]–[7]. The disadvantage is that the

field theory contains some extra flavors (D7-branes which are moved to infinity).

Recently it was realized that 4-dimensional N = 1 Super Yang-Mills theories with

massive matter admit non-supersymmetric meta-stable vacua [8]. Subsequently, much work

has been dedicated to obtaining a string theory picture for these new vacua [9]–[15] (other

field theory directions were explored in [16]–[21]).

Metastable non-SUSY vacua can also appear in string theory by considering systems

of D-branes and anti D-branes. Systems of D5-branes - anti D5-branes were considered in

the work of [22] and configurations with D5-branes and anti D3-branes were used in [23].

Other metastable brane configurations with wrapped branes were considered in [24]. The

configuration of [22] contains D5 branes and anti D5-branes wrapped on different 2-cycles.

Because the geometry is rigid, they cannot cancel each other. The geometrical transi-

tion [25, 26] holds in the presence of the anti D5-branes as one can identify the gluino

condensates in field theory with the sizes of the S3 cycles in the deformed geometry.

Our goal is to study the metastable vacua discussed in [8] and [22]. In section 2,

the geometrically engineered configurations of the type [22] are translated into a brane
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configuration picture and the corresponding MQCD transition is similar to the ones of [27]–

[30]. The (anti)D5 branes are mapped into (anti)D4-branes on separated intervals between

NS branes, which prevents their annihilation. There are two types of geometries that one

consider. The first type is when all the wrapped P1 cycles are in the same homology class

and this was the case studied in [22].1 The second type is when the wrapped P1 cycles are

in different homology classes. The stable configuration of D4-branes and anti D4-branes

for the latter was discussed in [31].

After lifting to M-theory, the corresponding M5 brane will have several disjoint parts

and each levels out into planar M5 branes which reduce to disjoint deformed conifold sin-

gularities. The sizes of the corresponding 3 cycles S3 are then identified with the gluino

condensates on the D5-branes and anti D5-branes respectively. This constitutes an impor-

tant test of the new type of geometric transition introduction in [22].

In section 3 we consider the geometrical picture dual to the brane configurations used

in [10, 12, 13]. The geometry with massive flavors and the corresponding Seiberg duality

have been discussed extensively before in [28, 32]. The wrapped D5-branes on cycles of

resolved conifold geometries were used to consider Seiberg dualities as flops in the geome-

try [35 – 37]. The procedure of [28] can be applied for the case when the flavors are either

massless or are integrated out.2

When the masses of the flavors are smaller than the scale the situation becomes trickier.

Seiberg duality is a quantum symmetry and its full description should be clear in either

M-theory or F-theory. In brane configurations we only expect a classical equivalence. In

the work of [34] the Seiberg duality was considered as a classical equivalence between Higgs

branches and their deformations. The brane configurations were used to relate the Higgs

branches of the gauge groups U(Nc) and U(Nf −Nc). After going to the Higgs phase, there

is a freedom of moving the branes by turning on a D-term for the U(1) of either U(Nc)

or U(Nf − Nc). The moduli space of the electric and magnetic theories provide different

descriptions for the same moduli space of brane configurations.

One could consider the brane configuration of the Seiberg duality for massless flavors

and then deform the electric and magnetic theories by giving masses and expectation values,

respectively. But it gets harder to visualise this change in the brane configurations for more

complex theories. A unified description of getting the metastable vacua is required to deal

with all possible theories. The present work is a first step towards reaching this goal. The

method we propose gives a clearer picture of the different vacua of the magnetic theory

and also points to the origin of the different branches in the magnetic theory vacua.

In this work we develop the following procedure (valid for the limit of very light massive

quarks considered in the metastable vacua approach):

1. Consider the resolved conifold with the color D5 branes wrapped on the compact P1

cycle and the flavor D5 branes wrapped on some non compact holomorphic 2-cycle.

2. Take a very small non-holomorphic deformation of the P1 cycle such that it touches

the non compact holomorphic 2-cycle. By simultaneously rotating one of the line

1We would like to thank Cumrun Vafa for helping us clarify this issue.
2The Seiberg duality for very massive flavors in the IIA brane configuration was considered in [33].
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bundles such that it touches the North Pole of the P1 cycle, the result of these

deformations is a holomorphic cycle in a new complex structure. The rotation of

the line bundle determines a rotation of the non compact holomorphic 2-cycle which

aligns with the compact cycle.

3. In the new complex structure we are now ready to go through the procedure of [34]

and perform the Seiberg duality as a flop in the new geometry. The flop does not

change the complex structure. In the Seiberg dual geometry, the flavor branes and

color branes are still aligned.

4. If we want to have the magnetic theory in the original complex structure, we need

to deform back the P1 and rotate the line bundle back to the original position. In

this case, the magnetic flavor non compact 2-cycle remains unchanged when the line

bundle is rotated as it does not end on the rotating line bundle anymore. It was a

holomorphic cycle in the deformed complex structure but it is clearly non holomorphic

in the original complex structure.

When the cycles are rotated, there is a tachyon mode between the various wrapped

branes. One way to circumvent this tachyonic mode is to allow the bounding of D5-branes

which implies a recombination of the geometrical cycles. The P1 cycle changes into a non

compact holomorphic cycle ending on the rotated line bundle and is accompanied by a non

compact non holomorphic cycle ending on the non rotated line bundle.

The above manipulations are a sign that more general deformations for An singularities

are required in order to handle the geometries of metastable vacua. We comment on this

at the end of section 3 and leave the details for future work.

2. Metastable vacua with branes and anti-branes

In what follows we will use the following directions for the branes:

1. in type IIA, the brane configurations contain an NS brane in the directions (012345),

an NS’ brane in the (012389) directions and D4-branes in the (01237) directions.

2. in type IIB, the wrapped branes are D5-branes in the direction (012367) where x6 is

the angular direction of the S2.

3. in the M-theory discussion we use the following notations: v = x4 + ix5, w = x8 + ix9

and t = exp(−R−1x7 − ix10) where R is the radius of the circle S1 in the 11-th

direction.

In the recent paper [22] it has been discussed that not only the wrapped D5-branes can

be studied during the geometric transitions, but also anti D5-branes. The usual geometric

transition can be seen as replacing wrapped D5-branes on two cycles P 1 by fluxes on 3-

cycles S3. The wrapped D5-branes correspond to the UV limit of the field theory and the

fluxes to the IR limit of the field theory. The mapping requires the identification of the
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number Nk of wrapped D5-branes (the rank of the gauge group) with the flux of the HRR

3-form through the S3
k as

∫

S3

k

HRR = Nk (2.1)

and the identification of the gluino condensate in the field theory with the size of the 3-cycle

S3
k

∫

S3

k

Ω(3,0) = Sk. (2.2)

The new ingredient of [22] was to consider some extra anti D5-branes wrapped on 2-cycles.

This extends the equation (2.1) to negative numbers and the conjecture of [22] is that the

geometric transition duality also holds for systems of D5-branes and anti D5-branes.

We can reformulate the new conjecture in terms of type IIA brane configuration by

using the results of [27]–[30]. The wrapped D5-branes on the S2 can be mapped into D4-

branes on the interval given by the radial direction of the S2. The singular lines inside the

resolved conifold are mapped into a pair of orthogonal NS branes.

What happens if one wraps anti D5-branes? They are mapped into anti-D4 branes

lying between two orthogonal NS branes. If we have both wrapped D5-branes and wrapped

anti D5-branes, the system will be mapped into D4-branes and anti-D4 branes. This type

of configuration has been extensively discussed in the work of [31].3

Let us consider a resolved geometry with many S2 cycles and wrap Nk D5-branes on

the k-th cycle and Nk′ anti D5-branes on the k′-th cycle. We now distinguish between two

cases:

1. The P1 cycles are in the same homology class which is the case considered in [22].

The geometry is obtained by starting with a resolved N = 2, A1 singularity and then

deforming by adding

W =

n+1
∑

k=1

gk

k
TrΦk (2.3)

where Φ is the unrestricted direction in the normal bundle. We get a collection of n

resolved conifolds N = 1 singularity which contains n P 1 cycles in the same homology

class.

We can also add D5 branes on each of the P1 cycles. After a T-duality this will

become a straight NS brane and a curved NS’ brane, as discussed in [28], see figure 1.

In the limit gN → ∞ this changes into figure 2, where the curved NS’ changes into n

straight NS’ branes orthogonal on the NS brane.

To reach the configuration of [22] we replace some stacks of D5 branes with stacks

of anti D5 branes. By starting with Nk D5-branes on the k-th cycle and Nk′ anti

D5-branes on the k′-th cycle, after T-duality we get Nk D4-branes at ak and Nk′ anti

D4-branes at ak′ .

3A similar system has been considered in [38] , but with D5-branes and anti D5-branes which are wrapped

on the vanishing cycle of a singular conifold.
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Figure 1: The T-dual configuration of D5 branes distributed among n P
1.
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Figure 2: The brane configuration in the limit gn → ∞.

2. The P1 cycles are not in the same homology class. In this case one starts with the

resolution of N = 2, An singularity and wrap D5 branes on each of the P1 cycles.

The T-dual is a configuration with D4-branes between pairs of parallel NS branes:

By adding masses for the adjoint fields, one gets an N = 1 configuration with D4-

branes between rotated NS branes. One can replace some of the D4-branes with anti

D4-branes. In order to reduce the discussion to the one of the previous case, let us

consider that we have Nk D4-branes between the k-th NS brane and the k + 1-th NS

brane and Nk′ anti D4-branes between the k′ NS brane and the k′ + 1 NS brane.

The result of [31] for k+1 = k′ is that the two D4-branes and anti D4-branes repel each
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Figure 3: An brane configuration: D5-branes wrapping P
1 cycles are T-dualized to D4 branes

between NS branes.

other when adjacent. Nevertheless, if the D4-branes and anti D4-branes are not adjacent,

the brane configuration then becomes stable and the stability also holds in the T-dual

picture with wrapped D5-branes and anti D5-branes.

The IIA configuration can then be lifted to M-theory and one can then go through the

MQCD transition of [27]. As the configuration of D4-branes and NS branes is lifted to a

single M5 brane, the same holds for the configuration of anti D4-branes and NS branes.

We start with case 2) which is simpler to describe and the we return to case 1).

Remember that the D4-NS system is lifted to an M5 brane:

vNk = t, wNk = ξNkt−1, vw = ξ (2.4)

where ξ is related to Λ, the dynamical scale.

The Nk D4-branes have the orientation as starting from the NS brane extended in the

v-direction (therefore we have vNk = t) and ending on the NS brane extended in the w

direction (therefore we have wNk = ξNkt−1). For the case of Nk′ anti D4-branes between

an NS brane (v direction) and an NS’ brane (w direction) the situation changes as the

anti D4-brane pulls (starts on) the NS’ brane and pushes (ends on) the NS brane. The

corresponding M5-brane is

wNk′ = t, vNk′ = ξ
Nk′

1 t−1, vw = ξ1. (2.5)

If one then closes the S2-cycles that the D5-branes are wrapped on, this corresponds to

closing the intervals between the k-th NS brane and the k+1-th NS brane and between the

k′-th NS brane and k′ + 1-th NS brane, respectively. The result is that the M5 brane (2.4)

becomes a collection of Nk planar M5 branes [27]:

Σl : t = t0, v w = ξ exp(2πil/Nk), l = 0, · · · , Nk − 1 (2.6)

The M5 brane (2.5) has a similar form, the only difference being that ξ and Nk are

replaced by ξ1 and |Nk′ |:

Σn : t = t1, v w = ξ1 exp(2πil/|Nk′ |), l = 0, · · · , |Nk′ | − 1 (2.7)
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where |Nk′ | is the absolute value of the flux due to the k′ anti D4-branes.

The only question is how are ξ and ξ1 related. For the D4-branes the value of ξ is

ξ = Λ3
0exp

(

−
2π i α

Nk

)

(2.8)

where Λ0 is the cut-off scale and α is the bare coupling constant:

α = −
θ

2π
− i

4π

g2
Y M

. (2.9)

The Yang-Mills coupling constant is written in terms of the geometry and string constants

as
1

g2
Y M

=
∆L

gsls
(2.10)

where the value of ∆L measures the distance between the two NS branes. We can ask

what is the difference between having D4-branes or anti D4-branes. The measurement of

∆L is in opposite direction for anti D4-branes as compared to the D4-branes. Therefore,

if we measure ∆L from left to right, it results that if for a D4-brane α is given by (2.9),

the corresponding coupling constant for anti D4-branes is ᾱ.

This implies that for anti D4-branes the value of ξ1 is

ξ1 = Λ3
0 exp

(

−
2π i ᾱ

|Nk′ |

)

. (2.11)

The main result of [27] was that, after the MQCD transition, the value of ξ was

related to the size of the S3 in the deformed geometry. But equation (2.6) reduces exactly

to the deformed conifold when reducing from M theory to type IIA, with the size of the

deformation S3 being ξexp(2πil/Nk). Because of the above relation between ξ and Sk, we

see that the geometric transition conjecture holds if the gluino condensate for the gauge

group on the D4 branes (identified with the size of the S3
k) is

< Sk >= Λ3
0 exp(−

2πiα

Nk
) exp(2πil/Nk), l = 0, · · · , Nk − 1. (2.12)

The same thing holds for anti D4-branes. The curve (2.7) reduces to a deformed

conifold with the size of the S3
k′) being ξ1exp(2πil/|Nk′ |). There is similarity between the

deformation of the geometry with cycles with positive and negative fluxes. The relation

between ξ1 and Sk′ implies that

< Sk′ >= Λ3
0 exp(−

2πiᾱ

Nk′

) exp(2πil/|Nk′ |), l = 0, · · · , Nk′ − 1. (2.13)

We can now go to the case 1), in the gN → ∞ limit. The are D4-branes and anti

D4-branes ending on the NS brane at ak and ak′ . For the case of two stacks of D4 branes,

the M5 brane would have the form:

t = (v − ak)
Nk(v − ak′)Nk′ , w =

ξ1

v − ak
+

ξ2

v − ak′

(2.14)
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where ξi are equal to Λ3
i with Λi being the dynamical scales of the N = 1 theories. The

Λi are related to the N = 2 scales by threshold condition

Λ3
k = gn+1Λ

2N/Nk

N=2 (ak − ak′)1−2Nk′/Nk ; Λ3
k′ = gn+1Λ

2N/Nk′

N=2 (ak′ − ak)
1−2Nk/Nk′ (2.15)

This formula is obtained after integrating out the massive adjoint field of mass gn+1(ak−ak′)

and the massive W-bosons of mass (ak′ − ak)
−2Nk/Nk′ . The mass of the massive adjoint

field is unchanged by replacing the D5-branes with anti D5-branes but the W boson masses

change. The change is due to the change of orientation of the D5 branes into anti D5

branes. There is also a change α2 → ᾱ2 as discussed before. This two changes explain the

replacement of the equation (3.13) of [22] with their equation (3.14).

In [22] it is shown an explicit identification between the field theory and geometrical

quantities. As discussed in [28], the problems which arise in making the same identifications

in the MQCD transitions are due to the fact that the geometrical curve is hyperelliptic and

the MQCD curve is rational. The only case when the identification can be made is in the

case of quadratic superpotentials for the adjoint field, which reduces to the case 2).

After discussing the metastable vacua from systems of branes and antibranes, we con-

sider the case of metastable vacua from rotated branes in the next section.

3. Metastable vacua with branes at angles

In this section we consider the metastable vacua discussed in [8]. The brane configuration

and the MQCD picture have been considered in [10, 12, 13]. The work of [13] arrived at

a negative conclusion in concerning the possibility of having an MQCD picture for such

metastable vacua. We will argue that a more general framework of deformations of An

singularities might be needed in order to obtain such an MQCD picture.

We start with a very brief review of the field theory results. We have an N = 1 SU(Nc)

theory with Nf massive flavors Q, Q̃, their mass being much smaller than the dynamical

scale Λ. We work in the range Nc + 1 ≤ Nf < 3
2Nc, such that the magnetic phase is free.

The Seiberg dual is N = 1 SU(Nf − Nc) with Nf flavors q, q̃ and the meson M

together with a superpotential

W = hTr(qMq̃) − hµ2Tr(M). (3.1)

The region where the masses are very small is characterized by a breaking of SUSY due to

the F-term of M which implies that q, q̃ have Nf −Nc nonzero vacuum expectation values

which equal the Nf − Nc largest masses of the electric theory.

In terms of brane configurations, the electric picture contains the same NS, NS’ and

electric D4-branes as in the previous section but also some semi-infinite D4 branes ending

on the NS or NS’ branes. For the D4-branes ending on the NS brane, the distance between

the Nc gauge D4-branes and the semi-infinite flavor D4-branes is the mass of the flavors.4

4This is due to the fact that the N = 1 brane configuration comes from an N = 2 configuration by

rotating the NS’ brane. The direction of the NS brane describes the Coulomb branch of the N = 2 theory

(the vacuum expectation value of the scalar field) so by moving on the Coulomb branch one gives a vacuum

expectation value to the adjoint field Φ and a mass to the fundamental quarks due to the coupling QΦQ̃.
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Figure 4: Brane construction .

For the D4-branes ending on the NS’ brane, the distance between the Nc gauge D4-branes

and the semi-infinite D4-branes is the vacuum expectation value of the meson M .

The brane configuration is shown in figure 4. The angle θ is related to the mass of the

N = 2 adjoint field by tanθ = mass. In what follows we will take θ = π/2, i.e. the case

when the adjoint field is infinitely massive. The case with θ 6= π/2 is also interesting as it

would describe the metastable vacua considered in [17].

After a Seiberg duality, the position of the NS and NS’ branes interchange. In consid-

ering the moduli space of vacua, there is a big difference between having massive quarks

with a mass bigger or a mass lower than the scale, in both the electric and magnetic pic-

tures. If the masses are bigger than the scale, the quarks are integrated out and what we

get is an electric scale

Λ̃3
e = Λ

3Nc−Nf /Nc

e

(

∏

µ

)1/Nc

(3.2)

and a magnetic scale

Λ̃3
m = Λ

3Ñc−Nf /Ñc

m

(

∏

µ

)1/Ñc

(3.3)

where Ñc = Nf −Nc. As considered in [28], the lift of this brane configuration to M-theory

is an M5 brane depending on µ.

For the non-SUSY vacuum described above, the position of the NS and NS’ branes

interchange but the exchange between the masses of the electric quarks and those of the

magnetic quarks does not hold. This is because the magnetic quarks are massless but

have vacuum expectation values instead. The mass of the electric quarks is mapped into

the vacuum expectation value of the magnetic quarks. Because the mass of the magnetic

quarks is measured by distances on the NS’ brane, the vevs of the magnetic quarks are

measured on the NS brane.

We now want to explicitly perform a Seiberg duality. In the brane configuration

language, for the case of massless electric quarks this has been shown explicitly in [34]. As

– 9 –
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the stack of the Nf electric flavor branes touches the stack of the Nc electric color branes,

we can bind together Nc color branes with Nc flavor branes and move them together with

the NS’ brane in the x6 direction, then in the x7 direction and back in the −x6 direction.

What we get is the dual theory, with Nf − Nc color D4 branes and Nf flavor D4-branes.

There is no such explicit construction for the case of light flavors because there is

no way to bind color D4 branes to light flavor D4-branes without breaking SUSY in the

electric theory.

The displacement on the NS brane direction is the same in both electric and magnetic

pictures. In the magnetic picture, the flavor D4-branes are at an angle with respect to the

color D4-branes. The angle is given by

tan(α) =
µ

∆L
(3.4)

where ∆L is the length of the color D4 branes and is related to the field theory coupling

constant g by
1

g2
=

∆L

gsls
. (3.5)

3.1 First choice: geometry and NS flux

One way to obtain branes at angles in type IIA brane configurations is to start with IIB

branes and NS flux. Let us consider the following starting point in type IIB: take finite

D5-branes wrapped on an S2 with coordinates (y, θ2) and infinite D5-branes wrapped on

a non-compact cycle with same radial and angular coordinates. Add some BNS field in

(y, θ1) directions on both the finite S2 and the non-compact 2-cycle, where θ1 is a direction

orthogonal to the S2 cycle.5

A T-duality in the y direction takes the D5-branes into D4-branes which are still

parallel. It is well-known that a T-duality on the y direction of the T 2(y, θ1) in the presence

of a BNS field determines a rotation of the T 2 by an angle

tanβ = BNS(y, θ1) (3.6)

This means that the coordinates (y, θ1) are rotated into (y′, θ′1) by an angle β.

Denote the coordinates of the NS branes and the D4-branes by (r, z, y′, θ′1, x, θ2), the

NS branes being extended in the directions NS(x, θ1) and NS’(z, r). We rotate the direction

θ′ till it coincides back with θ1. The semi-infinite D4 brane do not feel the effects of the

rotations, as they are extended in the θ2 direction. Hence the introduction of the NS field

does not give the wanted picture with rotated D4 branes.

3.2 Second choice: just geometry

Consider the resolved conifold. The small resolution is covered by two copies of C3 with

coordinates Z,X, Y (Z ′,X ′, Y ′). The resolved conifold geometry is

Z ′ = 1/Z, X ′ = XZ, Y ′ = Y Z (3.7)

5This is different from the discussion of [38] where there were pairs of D5-branes and anti D5-branes on

the vanishing cycle of a conifold. The BNS was turned on both directions of the S2 cycle and the D5 brane

and anti D5-brane pair gave rise to an integer D3-brane.
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which has a compact 2-cycle Z ′ = 1/Z. If we wrap D5-branes on the compact 2-cycles we

get a gauge group on the D5-branes.

We can also define non compact holomorphic cycles. To do so, we actually start with

an N = 1 deformed A3 singularity which, after resolution, gives a collection of 3 resolved

conifold geometries

Z ′
i = 1/Zi, X ′

i = XiZi, Y ′
i = YiZi, i = 1, 2, 3 (3.8)

where X1 = X ′
2, X2 = X ′

3, Y1 = Y ′
2 , Y2 = Y ′

3 .

We have three compact 2-cycles given by Z ′
i = 1/Zi, i = 1, 2, 3. We can keep the

second 2-cycle compact i.e. we keep the lines X1 = X ′
2 and X2 = X ′

3 unchanged. At the

same time we take the lines X ′
1, Y

′
1 and X3, Y3 to infinity which means that the compact

left and right 2-cycles become holomorphic non-compact cycles. In what follows we denote

X1 = X ′
2 = X ′, Y1 = Y ′

2 = Y ′ and X2 = X ′
3 = X, Y1 = Y ′

2 = Y. (3.9)

The non compact 2-cycles we are going to considered in this work are

Y = 0, X = mass or Y ′ = 0, X ′ = vev. (3.10)

As discussed in [28], the Seiberg duality can be obtained by a birational flop in the

geometric engineering. For the resolution of the conifold, this means an exchange of the

role of X(Y ) and Y ′(X ′) in the resolution, together with interchanging the left and right

non compact 2-cycles. This flop appears quite natural for massless flavors. For the massive

flavors, the flop still exchanges the X(Y ) and Y ′(X ′) in the resolution but it is less clear on

how to handle the flavors. The metastable solution of [8] corresponds to light flavors in the

electric theory and massless flavors in the magnetic theory but with vacuum expectation

values.

We still want to view the Seiberg duality as a flop in some geometry, where the color

D5-branes and the flavor D5-branes touch each other. To do this, we need to perform

changes in the geometry such that it resembles the one considered in [34]. We consider a

non holomorphic deformation of the P1 cycle, together with a rotation of the line bundle,

in the following way:

• move the North Pole of the P1 cycle along the direction X ′ by a very small distance

µ. The projection from the North Pole, used to define the coordinate Z ′, changes and

this makes the transition function from the upper to lower coverings non-holomorphic. In

terms of brane configurations, this means a rotation of the D4 branes by an angle (3.4).

• the axis X ′ is then rotated by the same angle (3.4) until it becomes tangent to the

North pole of the P1 cycle. The value µ in (3.4) is very small so the angle α is also very

small.

• the non compact 2-cycle ending on X ′ is also forced to rotate by (3.4) and in the

final configuration there is an alignment between the two stacks of D5 branes. There is a

map between the initial and final holomorphic transition functions

Z ′ = 1/Z → Z̃ ′ = 1/Z̃. (3.11)
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In the geometry C3(X̃, Ỹ = Y, Z̃), the North pole of the P1 coincides with the South Pole

of the infinite holomorphic 2-cycle.

The normal bundle also changes in order to describe the proper embedding of the

“new” P1 into the resolved conifold. The overall change is

C3(X ′, Y ′, Z ′) → C3(X̃, Ỹ = Y, Z̃). (3.12)

The line bundle X ′ rotates into the line bundle X̃, whereas the line bundle Ỹ remains

unchanged. The size of the P1 cycle remains the same. This means that the gauge

coupling constant does not change after the geometrical manipulations, as it should.

As shown in [27], there is a 1-1 map between the geometrical coordinates and the

MQCD coordinates when the brane configuration is lifted to 11 dimensions. This is

Z ↔ t, X ′ ↔ v, Y ↔ w (3.13)

We can try to see the change (3.12) in the MQCD coordinates. Start with the usual M5

brane wrapped on a holomorphic curve, in the presence of massive matter:

t = wNc−Nf

(

w −

(

Λ
3Nc−Nf

N=1

µNc−Nf

)1/Nc

)Nf

, vw = (Λ
3Nc−Nf

N=1 µNf )1/Nc (3.14)

which can be rewritten in terms of only t and v as

vNc t = Λ
3Nc−Nf

N=1 (µ − v)Nf . (3.15)

Now we perform the change in the complex structure by very small rotations of angle (3.4)

in the (x4, x7) plane. When rotating the P1 cycle, the radial direction will not change in

the limit of small angles (i.e. small quark masses). If the origin of the X̃ ′, Z̃ is chosen at

the new point of intersection, a rotation of the line bundle takes us to

ṽNc t̃ = Λ
3Nc−Nf

N=1 ṽNf (3.16)

in the limit of very small µ and ṽ → ∞. But this is just the usual asymptotic NS region

ṽ → ∞, w → 0, t̃ → Λ3Nc−Nf ṽNf−Nc . (3.17)

In the case of very small masses, the asymptotic regions v → ∞ and ṽ → ∞ are identical

so the small deformation of the complex structure is invisible.

The coordinate w is unchanged by the above manipulations. The relation between the

coordinate t̃ and w is similar to the one in (3.14) and this tells us that the usual asymptotic

NS’ region is obtained

w → ∞, ṽ → 0, t̃ → wNc . (3.18)

The curve obtained is then similar to one with massless matter and we can now discuss

the Seiberg duality in the modified geometry. We have the situation of [34] and the Seiberg

duality then proceeds as an usual flop where

C3(X̃, Ỹ = Y, Z̃) ↔ C3(Ỹ ′, X̃ ′, Z̃ ′). (3.19)
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Now, if we want to see the effect of the flop in the original complex structure, we need

to rotate back from the tilde coordinates to the original ones. This will leave the Ỹ ′ axis

invariant but will change the X̃ ′ axis and Z̃ ′ axis. The compact North Pole of the P1 cycle

is moved in its original position and its transition function is again Z ′ = 1/Z.

But the rotation of the line bundle does not affect the non compact 2-cycle which

remains in the rotated complex structure and it is not holomorphic in the original coordi-

nates. When the rotation starts, there is an angle between the compact D5-branes and the

non compact D5-branes and this tilting determines a tachyon to appear between the two

stacks of branes. There are two ways to cancel the tachyon:

1. bind and rotate together the stacks of D5-branes

2. distance them such that the open string between them has no tachyonic mode.

What is the tachyonic mass? It is related to the angle of rotation of the compact cycle

with respect to the non compact cycle as

m2
tach = −

tan(ψ)

l2s
(3.20)

where tan(ψ) = µ
Ln

and Ln is the distance to the cut-off beyond where the normal defor-

mations of the cycle inside the Calabi-Yau is frozen [39].

The final configuration is then obtained by combining the color D5-branes with some

of the D5 branes on the non compact holomorphic 2-cycle ending on the Y to give D5-

branes on a non compact holomorphic 2-cycle ending on the X ′. The other cycle is the

non compact non holomorphic 2-cycle ending on the Y line of singularity.

After the duality and recombination of branes, the configuration with M = 0, q = q̃ = 0

is actually never obtained in the magnetic theory. This is because the branes recombine

before rotating back to the original geometry. In the magnetic theory we can turn on vevs

for the field M . This means displacing the non compact cycle on the corresponding line

bundle. If the non compact cycle is infinitesimally displaced on the line bundle, there is an

attractive force which determines a bound between the branes. If the distance is bigger,

than the stacks of D5 branes tend to reject each other and the theory goes to the SUSY

vacua.

One can lift this configuration to F theory. We start with the explicit metric for the

resolved conifold, obtained in [6]:

ds2
M = C(r)2dr2 +C(r)−2

(

dz+Qcotθ1dx+Qcotθ2dy
)2

+C(r)(dθ2
1 +dx2)+C(r)(dθ2

2 +dy2).

(3.21)

where the compact cycle is in the (y, θ2). The deformation of the geometry is obtained

by considering a rotation in the (θ1, θ2) plane. One can study the corresponding SUGRA

solution in detail to derive the form of the non holomorphic cycles.

We can also lift to M theory where we encounter the problems in getting a solution

for the single M5 brane pointed out in [13]. The above discussion hints that more general

geometrical deformation from N = 2 theories to N = 1 theories are needed. We use

– 13 –



J
H
E
P
0
2
(
2
0
0
7
)
0
2
0

arguments similar to the ones of [40]. Start with an N = 2 geometry O(−2) + O(0) over

a P1 cycle and denote the direction O(−2) and O(0) by φ(z) and χ(z) respectively. The

holomorphic Chern-Simons theories is described by the following action

S =
1

gs

∫

Tr(φD̄χ) (3.22)

If one turns on the Higgs fields φ(z) or χ(z), the P1 cycle is deformed into a non holomorphic

curve C and the above action modifies into

S =
1

gs

∫

Y
Ω (3.23)

where Y is a 3-chain containing P1 and C. By adding a superpotential for the field χ we

deform the complex structure such that C becomes P1 in the new complex structure. The

complex structure of the N = 2 theories is modified by perturbing the operator ∂̄j̄ by

D̄ = ∂̄j̄ + Ai
j̄∂i (3.24)

where Ai
j̄

is anti holomorphic one form and is related to the above superpotential [42].

The case of ADE quivers has been considered in [41]. For the An singularities, the

equation (3.22) is generalized to

S =
1

gs

∫

Tr(φiD̄χi), i = 1, · · · , n (3.25)

There are n P1

i
cycles which can be deformed into n non holomorphic curves Ci by turn-

ing on the Higgs fields. By adding a superpotential for the fields χi, we can reach the

geometries:

(a) all the non holomorphic curves Ci change into n intersecting P1

i
cycles in the new

geometry [41].

(b) all the non holomorphic curves Ci change into n P1

i
cycles, some of which do not

intersection This is the geometry corresponding to the electric theory.

(c) some of the non holomorphic curves Ci remain non holomorphic after adding the

superpotential. This is the geometry corresponding to the magnetic theory.

The geometries of type b) and c) are taken into each other after Seiberg dualities. One

can use the powerful duality with the matrix models in order to get more insights into the

metastable vacua of [8].
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